

Opportunities for Distributed Generation in New Zealand

The Drivers and 'What's in it for You'

Presentation to DG Workshop 30 June 2002

Brian Cox Principal Project Advisor

Project Objective

To answer the question –

"How can I make distributed generation work for me?"

Framework for Analysis

- > Bottom up
- > Case studies to identify specific drivers and issues
- Review of international publications
- ➤ Monitoring of international work
- Expansion of information from case studies to provide national picture
 - Summary of specific drivers and issues
 - Learning from others
 - What is significant?
 - What are the opportunities?
 - What are the barriers?
- Application of learning to NZ

Christchurch · New Zealand

The Boundaries for DG

- Many Definitions of what DG covers
 - Distributed energy
 - Distributed energy resources
- > Can it include non generation?
 - Eg solar water heating
 - off grid 10kWwind turbine
- ➤ Can it include demand management?
- ➤ Does generation have to be grid connected?
- ➤ What size limits apply?
 - Eg is 39MW Kinleith cogeneration facility DG?
 - Is 10kW BP Solar DG?

Christchurch · New Zealand

Distributed generation is local generation, or reduction in generation, to meet capacity, reliability, and security requirements

Christchurch · New Zealand

DG is not new

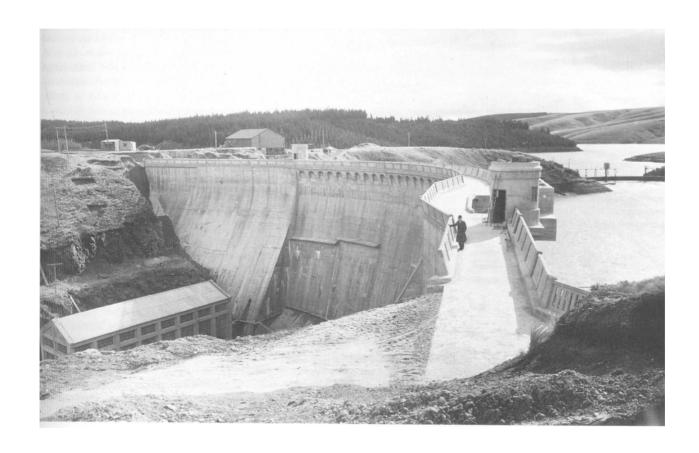
Christchurch · New Zealand

Bullendale in 1886



Christchurch · New Zealand

Reefton in 1888



Christchurch · New Zealand

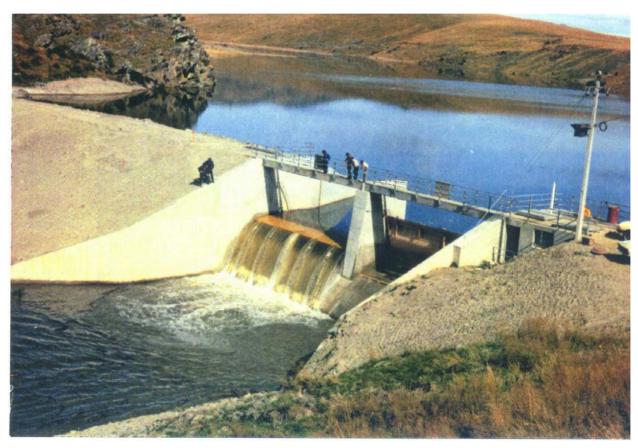
Mahinerangi above Waipori #1

Christchurch · New Zealand

Fertiliser Works Steam Turbine

Christchurch · New Zealand

Small Industrial Diesel Engines



Christchurch · New Zealand

Paerau Gorge Irrigation / Hydro

United Kingdom

- ➤ Pursuit of DG through initiatives for CHP, embedded generation, renewable generation
- ➤ Significance recognition that many DG technologies relate to heat supply with large efficiency benefits
- ➤ Working Group on network issues
 - issues of access for embedded generation to distribution networks
- ➤ Payment of shallow rather than deep connection charges for embedded generation
- > Exemption for CHP of climate change levy
- Renewables obligation

United Kingdom - Working Group

- ➤ Embedded generation Working Group
 - interconnection technical issues
 - connection charges
 - transparent connection and payment structures
 - information disclosure
 - regulatory environment to incentivise network operators

Christchurch · New Zealand

USA

- > Strategies
 - California DG Strategy signed off 11 June
 - DOE DG Strategy
- Survey of 23 implemented projects
 - Many corporates investing in DG out of environmental concern eg PV
 - Technology understanding is a key driver
 - Few investing to lower cost of energy
 - Businesses aiming for 99.9999% reliability (30 secs of outage per year)
 - Fuel cells and micro turbine sensitive to gas quality
 - Best to install in a new building
 - Best performance was with turnkey installation vendor takes all risk
 - Problem when all interconnections are treated as if a major power station
 - Few export electricity

US - Consumer Energy Council

- Convened 2 year DG Domestic Policy Forum
- Results recently published
 - Benefits of DG can be realised through coordinated action.
 - However major challenges and concerns to be addressed
- Drivers
 - State of electricity transmission infrastructure
 - Demands for high reliability and quality of supply
- Electricity distribution system not designed for flow from multi generators to multiple buyers

Christchurch · New Zealand

Australia

- Independent Pricing and Regulatory Tribunal (March 2002)
 - interconnection technical issues
 - Light handed regulatory approach
 - Fair connection agreements
 - Framework for small generators
 - National standards and guidelines for connection

Common Overseas Drivers

- Changing industry structures
- ➤ DG is actually about distributed energy / resources
- ➤ DG role in competitive markets
- Some new technologies reaching maturity
- Customer choice
- > Aging infrastructure
- Growth of importance of reliability and quality
- Regulatory and interconnection issues to be addressed

Christchurch · New Zealand

Review of International Publications

Article / papers abstracted between Jan 1997 - May 2002

- > 384 referenced articles and papers
- ➤ 35 referenced conferences on DG
- > 51% network and distribution
 - 21% on power quality
 - 6% power converters
 - 9% security issues
- ➤ 26% on technologies
 - 10% fuel cells
 - 4% combustion turbines
 - 3% photovoltaics
 - 1% wind
- ➤ 21% General DG across all aspects

Christchurch · New Zealand

Why are we currently interested in DG?

- Free and open energy market
 - Entry of new players
 - Competition
 - Integration of gas and electricity markets
 - Reorganisation of wholesale and retail markets
- > Technology developments
- Maturity of the energy market
 - Move from being a commodity
 - Customers considering total energy solutions
 - Niche products and services
- Aging and constrained infrastructure
- Optimisation of asset values
- Commercial incentives rather than national security
 - Established national infrastructure
 - Focus on cost of energy rather than development

Christchurch · New Zealand

Case Studies

- An Industrial Cogeneration Facility (Kinleith biomass)
- ➤ A Dual Purpose Renewable (Opuha hydro)
- ➤ A Peak Demand Reduction (Christchurch CBD Network)
- ➤ A Regional Network (East Cape & Gisborne)
- ➤ A Small Scale Renewable (BP Solar service stations)
- ➤ An Off-grid Renewable (Stonyhurst wind/ diesel)
- ➤ A Fluctuating Renewable (Christchurch wind turbine)
- ➤ A Remote Rural Community (Kumeroa)

> Orion

- Use of DG to avoid transmission upgrades
- Value of non-grid connected DG
- Value of reliable diesels
- Multiple contracts

> Kinleith

- Integration of DG with industrial operations
- Management of transmission connection costs
- Value of relationship with Network company
- Value of demand management

Eastland Network

- Network optimisation
- Allows reduction in n-1 network security constraints
- Flexibility of diesels to meet security, reliability and capacity
- Short term and long term technology solutions
- Total energy solutions
 gas, diesel, wind, hydro, solar, transmission, demand management
- Relationships between market players

- Stonyhurst off grid generation
 - local DG to avoid high cost transmission line
- > Wind farm
 - Increased value if fluctuating supply can be firmed
 - Need for explicit and helpful network connection policies
- Opuha small hydro
 - High benefits to adjacent community
 - High free rider benefits to wider community

- > Totara valley community
 - Interconnection and network issues
- > BP Solar
 - Cost of new technologies
 - Net metering
 - Safety requirements for multi direction electricity flows

Comparison Between Overseas and NZ

Overseas

- Emphasis on fuel cells, microturbines and photovoltaics
- Small on-site generation (backup, security)
- Driving to DG for its own sake
- Supported by government subsidies
- Outage avoidance

> New Zealand

- Total energy solutions
- Traditional technologies
- Integration of transmission and energy costs
- Commercial decision making

Project Hypothesis

That distributed generation allows paradigm shifts in thinking about solutions for meeting consumer energy capacity and reliability requirements.

